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Abstract

The propagation of elastic waves in the layered piezoelectric media with inhomogeneous initial stresses
was analyzed through the method of transfer matrix. Firstly, the governing equations of motion for the
prestressed piezoelectric media are derived on the basis of the nonlinear continuum mechanics. Secondly,
the transfer matrix for the Love waves in the piezoelectric media (ZnO/SiO2/Si structure) is presented.
Solutions are obtained by the transfer matrix method. Thirdly, numerical calculations are given for the
ZnO/SiO2/Si structure. It is found that the middle layer SiO2 and the initial stress in layers affect the phase
velocity, group velocity and electromechanical coupling coefficient obviously. These results are important
in the surface acoustic wave devices.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Investigations on the propagation of elastic waves, especially the surface acoustic wave, in
layered piezoelectric media have been of great interest since films deposited on supporting
substrates are generally a requisite for acoustic devices [1]. Typically, a layered structure consists
of two, three or arbitrary layers of different materials. The direct method is complex for a
multilayer structure. For a layered media with arbitrary layers, the transfer matrix method is a
simple and powerful technique to analyze wave phenomena. The transfer matrix method was first
presented by Thomson [2]. Liu et al. [3] applied this method to anisotropic laminates. Following
their work, there were many works with this method. The main developments of the matrix
see front matter r 2004 Elsevier Ltd. All rights reserved.
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techniques can be attributed to Liu and Tani [4], Stewart and Yong [5], Levesque and Piche [6],
Lowe [7], and Liu et al. [8].

The initial stresses in the film are inevitable and important because they may result in frequency
shift, a change in the velocity of surface waves and controlling the selectivity of a filter and
temperature compensation of the devices. The elastic wave propagation in a homogeneously
stressed medium has been investigated by Nalamwar and Epstein [9]. Ono et al. [10] discussed the
surface acoustic wave in a three layered structure without initial stress. It is, however, well known
that in most practical situations the actual initial stresses have maximum values at the surface of
the film and decrease rapidly along the thickness direction of the film structure. Many researchers
[11,12] resorted to the perturbation theory to treat the inhomogeneous initial states. The present
study involves the application of the transfer matrix method to analyze the effect of initial stress
on the Love wave mode and dispersion behavior in a layered piezoelectric ceramic with thin layers
deposited on a relatively thick substrate. Most Love wave sensors are fabricated on this kind of
structure and have many applications, such as measuring properties of liquids [13]. The middle
layer in a multi-layer structure can be used to adjust the range of phase velocity of SAW and to
improve its property, such as ZnO/SiO2/Si [14,15] structure and ZnO/Diamond/Si structure [16].

2. Equations of motion in the prestressed piezoelectric media

When a continuum medium undergoes deformation, the deformation and motion of a material
point can be described by [17]

xk ¼ xkðX K ; tÞ; K ¼ I; II; III; k ¼ 1; 2; 3; (1)

where the capital letter X denotes a particle position at the natural undeformed configuration and
the lower letter x denotes its position at current configuration. The capital and lower subscripts K
and k denote the components in the Lagrangian coordinate system at undeformed configuration
and the Eulerian coordinate system at current configuration, respectively. t denotes time. Eq. (1)
may be interpreted as a mapping of the natural configuration on the current configuration. The
gradient equations are

EK ¼ �F;K ; (2)

�KL ¼ 1
2 ðxk;K xk;L � dKLÞ: (3)

It is well known that the basic equations in the undeformed configuration are [17] the equations
of motion:

ðsKLxl;LÞ;K þ r0 f l ¼ r0 €ul ; (4a)

the electric displacement equation without volume charge

DK ;K ¼ 0 (4b)

and the associated boundary conditions:

sKLxl;LNK ¼ Sl on AT ; (5a)

DKNK ¼ s� on Aq: (5b)
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The displacement and electric potential boundary conditions are not discussed. Therefore, they
are not given in this paper.

In Eqs. (2)–(5), r stands for the second Piola–Kirchhoff stress tensor, e is the Green strain
tensor, D and E are the electric displacement and electric field vectors, respectively, r0 is the mass
density, AT and Aq denote the boundary surfaces subjected to external mechanical force and
electrical charge, respectively. f is the force per unit mass, Sl and s� are, respectively, the applied
surface traction and surface electric charge density, F is the scalar electric potential. All the above
variables are measured at the natural configuration. dKL is the Kronecker delta; a comma at the
subscript position denotes the differentiation with respect to the space-coordinate, a dot over the
letter denotes the time differentiation.

In practical cases, a mechanical biasing state produced by initial stress is in an equilibrium state.
The initial stresses are produced in the manufacturing process. All the physical variables in the
biasing state are designated by a superscript label ‘‘0’’. According to Eq. (4), the equations of
equilibrium at the initial biasing state are written as [8,17]

ðs0
KLx0

l;LÞ;K þ r0 f 0
l ¼ 0; D0

K ;K ¼ 0 (6)

and the material gradient is

x0
l;L ¼ dlL þ u0

l;L: (7)

Substituting Eq. (7) into Eq. (6), it is found that

ðs0
KLdlL þ s0

KLu0
l;LÞ;K þ r0 f 0

l ¼ 0: (8)

Under the applied external dynamic mechanical and electrical loads, the body is further
perturbed by an additional wave motion of small amplitude onto the biasing state. Let

st
KL ¼ s0

KL þ sKL; ut
l ¼ u0

l þ ul ; Dt
K ¼ D0

K þ DK ; (9)

where st
KL and Dt

K are the total Kirchhoff stress and total electric displacement referred to the
natural state and ut

l is the total displacement component at Euler coordinate system. ul ; sKL and
DK are their incremental values due to the dynamic disturbance or applied signals superposed
onto the biasing state. Then the equations of motion may be expressed as

½ðs0
KL þ sKLÞdlL þ ðs0

KL þ sKLÞðu
0
l;L þ ul;LÞ�;K þ r0ðf

0
l þ f lÞ ¼ r0 €ul : (10)

Subtracting Eq. (8) from Eq. (10), we obtain the expected equation of perturbed motion in the
natural configuration

ðsKLdlL þ sKLu0
l;L þ ul;Ls0

KL þ sKLul;LÞ;K þ r0 f l ¼ r0 €ul : (11)

Due to the fact that sKL is small compared to s0
KL and ul is small compared to u0

l ; their product
term sKLul;L is negligibly small and will be dropped. Eq. (11) is reduced to

ðsKLdlL þ sKLu0
l;L þ ul;Ls0

KLÞ;K þ r0 f l ¼ r0 €ul : (12)

This is the governing wave equation of the applied signal or a perturbation in the form of a second
Piola–Kirchhoff stress.
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In practical calculation, the Eulerian coordinate system is adopted to coincide with the
Lagrangian coordinate system for convenience. Thus Eq. (12) can be rewritten as

ðsij þ siku0
j;k þ uj;ks0

ikÞ;i þ r0 f j ¼ r0 €uj; i; j; k ¼ 1; 2; 3: (13)

The electric displacement equation (4b) and associated boundary conditions (5) can also be
written as

Di;i ¼ 0;

ðsij þ siku0
j;k þ uj;ks0

ikÞNi ¼ Sj on AT ;

DiNi ¼ s� on Aq;
ð14Þ

where Di; Sj and s� are corresponding increments due to the dynamic disturbance superposed on
the biasing state.

The constitutive equations are [17–19]

st
ij ¼ cijkl�

t
kl þ

1
2

cijklmn�
t
kl�

t
mn � emijE

t
m � emijkl�

t
klE

t
m � 1

2
lmnijE

t
mEt

n þ h.o.t;

Dt
m ¼ emij�

t
ij þ

1
2

emijkl�
t
ij�

t
kl þ 2mnEt

n þ
1
2
2mnpEt

nEt
p þ lmnijE

t
n�

t
ij þ h.o.t; (15)

where i, j, k, l, m, n, p ¼ 1; 2; 3; cijkl and cijklmn are the second- and third-order elastic constants,
respectively, emij and emijkl are the second- and third-order piezoelectric constants, respectively,
2mn and 2mnp are the second- and third-order dielectric constants, respectively, and lmnij is the
electrostrictive constant.

The constitutive equations for the biasing state are

s0
ij ¼ cijkl�

0
kl þ

1
2

cijklmn�
0
kl�

0
mn � emijE

0
m � emijkl�

0
klE

0
m � 1

2
lmnijE

0
mE0

n þ h.o.t;

D0
m ¼ emij�

0
ij þ

1
2

emijkl�
0
ij�

0
kl þ 2mnE0

n þ
1
2
2mnpE0

nE0
p þ lmnijE

0
n�

0
ij þ h.o.t: (16)

From the difference of Eqs. (15) and (16), and on expressing the strain tensor and the electric
field in terms of the displacement and electric potential gradients, respectively, one can derive a
constitutive equation for the incremental stress tensor sij and electric displacement Dm: Neglecting
the higher order terms we have,

sij ¼ ĉijkluk;l þ êmijF;m;

Dm ¼ e�mijui;j � 2�
mnF;n; (17)

where

ĉijkl ¼ cijkl þ ðcijnldkm þ cijklmnÞu
0
m;n þ emijklF0

;m; êmij ¼ emij þ emijklu
0
k;l � lmnijF0

;n;

e�mij ¼ emij þ ðemildjk þ emijklÞu
0
k;l � lmnijF0

;n; 2�
mn ¼ 2mn þ lmniju

0
i;j � 2mnpF0

;p: (18)

Substituting of Eq. (17) into Eq. (13), one obtains

½ðĉijkl þ cinkldjmu0
m;nÞuk;l þ e�mijF;m þ uj;ks0

ik�;i þ r0 f j ¼ r0 €uj: (19)
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If we denote c�ijkl ¼ ĉijkl þ cinkldjmu0
m;n; then Eqs. (13) and (14) can be rewritten as

ðs�ij þ uj;ks0
ikÞ;i þ r0 f j ¼ r0 €uj; (20a)

Di;i ¼ 0; (20b)

ðs�ij þ uj;ks0
ikÞNi ¼ Tj; (20c)

DiNi ¼ s�; (20d)

where s�ij is not the true sij and

s�ij ¼ c�ijkluk;l þ e�mijF;m ¼ sij þ cinklu
0
j;luk;l þ emilu

0
j;lF;m;

Dm ¼ e�mijui;j � 2�
mnF;n; (21)

where c�ijkl ; e�mij and 2�
mn are effective elastic, piezoelectric and dielectric constants, respectively, and

they are related to the initial displacement and electric potential gradients in the biasing state. If
u0

i:j is small, then s�ij ¼ sij : In the following text for convenience, s�ij is replaced by sij ; but it should
be noted that they are different from those sij in previous equations.

Eqs. (20) and (21) are the fundamental governing equations and boundary conditions of
applied signal or perturbation for a general prestressed piezoelectric media.
3. Transfer matrix method

In this paper we discuss that the structure is made up of two layers with thickness of h1 and h2

ðh1 þ h2 ¼ hÞ; respectively, which are normal to the x-axis and a substrate, as shown in Fig. 1. The
symbols x, y, z are employed to represent the rectangular Cartesian coordinate system, which are
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Fig. 1. The layer structure divided into N sublayers.
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equivalent to the compact form of the indicial notation xi ði ¼ 1; 2; 3Þ: The layers are in the region
�hoxo0 and the substrate x40: The top surface of the layer x ¼ �h is free of stresses and
charge. There exist inhomogeneously distributed initial stresses in the layers. Experiments show
that the initial stresses vary along the depth x and get their peak values at the surface x ¼ �h or
�h1; as shown in Fig. 2. The thickness of the substrate is considerably larger than h and can be
treated as a half-space. The layers can be further divided into N sublayers. 1—m sublayers belong
to layer 1, m þ 1–N sublayers belong to layer 2. The half-space noted 0 is the substrate and the air
is denoted by layer N þ 1 (Fig. 1).

The transfer matrix method is used to solve the problem [5]. The basis for the transfer matrix
method is to develop a transfer matrix for each sublayer m, which maps displacements, stress
tractions, electric potential and electric charge from the lower surface of the sublayer m to its
upper surface. Successive application of the transfer matrix through 0 to N þ 1 and invoking
corresponding interface continuity conditions at their interfaces lead to a set of equations relating
the boundary conditions from the first interface to the last interface. After introducing the
external boundary conditions at the last interface, the transfer matrix is founded.

We will utilize a state space approach, which is a kind of transfer matrix method [20]. This
approach reduces the wave propagation problem to a set of first-order matrix differential
equations. According to Eq. (20a), in every sublayer we have

si1;1 ¼ r0 €ui � si2;2 � si3;3 � ui;kjs0
kj � ui;ks0

jk;j; i; j; k ¼ 1; 2; 3 (22)

when the body force is absent.
The constitutive relation equation (21) for the piezoelectric media can be rewritten as

sij ¼ c�ijplup;l ;

Di ¼ e�iplup;l ;
i; j; l ¼ 1; 2; 3; p ¼ 1; 2; 3; 4; (23)

where u4 ¼ F; and c�ij4l ¼ e�lij; e�i4l ¼ �2�
il : In all the following statements we define p ¼ 1; 2; 3; 4;

i; j; l ¼ 1; 2; 3 and a; b; g ¼ 2; 3:
If we identify the plane of incidence to be the plane yz as shown in Fig. 1, the solution is

up ¼ ApðxÞ exp½iðkyy þ kzz � otÞ� ¼ ApðxÞ exp½iðkaxa � otÞ�; (24)
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where i ¼
ffiffiffiffiffiffiffi
�1

p
; ky and kz are wave numbers in the y and z directions, respectively, and o is the

circular frequency.
Substitution of Eqs. (23), (24) into Eq. (22) results in

si1;1 ¼ ½�r0o
2Ai � ikbðc�ibp1Ap;1 þ ikgc�ibpgApÞ � Ai;11s0

11 � ikg2Ai;1s0
1g

þ kbkgs0
bgAi � s0

j1;jAi;1 � ikbs0
jb;jAi� exp½iðkaxa � otÞ�: ð25Þ

As a matter of fact, the stresses between layers s0
11; s

0
12; s

0
13 are small and can be dropped. Let

sij ¼ ~sijðxÞ exp½iðkaxa � otÞ�;

Di ¼ Tiþ6ðxÞ exp½iðkaxa � otÞ�: (26)

Eq. (25) can be rewritten as

~si1;1 þ ikbc�ibp1Ap;1 þ s0
j1;jAi;1 ¼ ð�r0o

2 þ kbkgs0
bg � ikbs0

jb;jÞAi þ kbkgc�ibpgAp: (27a)

Eqs. (20b) and (23) can be written in a similar way as

T7;1 þ ikbe�bp1Ap;1 ¼ kbkge�bpgAp; (27b)

c�1jp1Ap;1 ¼ ~sj1 � ikbc�1jpbAp; (27c)

e�1p1Ap;1 ¼ T7 � ikbe�1pbAp: (27d)

In order to express Eqs. (27) as a matrix, let

sn ¼ TnðxÞ exp½iðkaxa � otÞ�; n ¼ 1; 2; . . . ; 6;

where sn ðn ¼ 1; 2; . . . ; 6Þ represents s11ðsxÞ; s22ðsyÞ; s33ðszÞ; s32ðsyzÞ; s31ðszxÞ and s12ðsxyÞ;
respectively. The terms ð ~si1Þ in Eqs. (27a), (27c) are replaced by T1; T6 and T5; respectively, as i

changes from 1 to 3.
Eqs. (27) are the state equations and in a state space eight-dimensional unknown vectors can be

defined as

vmðxÞ ¼ ðA1m;A2m;A3m;A4m;T1m;T6m;T5m;T7mÞ
T; (28)

where v is the state vector, the subscript ‘‘m’’ indicates the quantities in the sublayer m. Then, Eq.
(27) can be expressed as

BmðxÞ
d

dx
� FmðxÞ

� �
vmðxÞ ¼ 0 or

d

dx
� B�1

m ðxÞFmðxÞ

� �
vmðxÞ ¼ 0; (29)
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where B�1
m ðxÞFmðxÞ is the state matrix of the sublayer m, where

Bm ¼

Bmð1; 1Þ ikbcn1b21 ikbcn1b31 ikbcn1b41 1 0 0 0

ikbcn2b11 Bmð2; 2Þ ikbcn2b31 ikbcn2b41 0 1 0 0

ikbcn3b11 ikbcn3b21 Bmð3; 3Þ ikbcn3b41 0 0 1 0

ikbenb11 ikbenb21 ikbenb31 ikbenb41 0 0 0 1

cn1111 cn1121 cn1131 cn1141 0 0 0 0

cn1211 cn1221 cn1231 cn1241 0 0 0 0

cn1311 cn1321 cn1331 cn1341 0 0 0 0

en111 en121 en131 en141 0 0 0 0

2
666666666666664

3
777777777777775

; (30)

Bmð1; 1Þ ¼ s0
j1;j þ ikbcn1b11; Bmð2; 2Þ ¼ s0

j1;j þ ikbcn2b21; Bmð3; 3Þ ¼ s0
j1;j þ ikbcn3b31;

Fm ¼

Fmð1; 1Þ kbkgcn1b2g kbkgcn1b3g kbkgcn1b4g 0 0 0 0

kbkgcn2b1g Fmð2; 2Þ kbkgcn2b3g kbkgcn2b4g 0 0 0 0

kbkgcn3b1g kbkgcn3b2g Fmð3; 3Þ kbkgcn3b4g 0 0 0 0

kbkgenb1g kbkgenb2g kbkgenb3g kbkgenb4g 0 0 0 0

�ikbcn111b �ikbcn112b �ikbcn113b �ikbcn114b 1 0 0 0

�ikbcn121b �ikbcn122b �ikbcn123b �ikbcn124b 0 1 0 0

�ikbcn131b �ikbcn132b �ikbcn133b �ikbcn134b 0 0 1 0

�ikben11b �ikben12b �ikben13b �ikben14b 0 0 0 1

2
666666666666664

3
777777777777775

; (31)

Fmð1; 1Þ ¼ �r0o
2 þ kbkgs0

bg � ikbs0
jb;j þ kbkgcn1b1g;

Fmð2; 2Þ ¼ �r0o
2 þ kbkgs0

bg � ikbs0
jb;j þ kbkgcn2b2g;

Fmð3; 3Þ ¼ �r0o
2 þ kbkgs0

bg � ikbs0
jb;j þ kbkgcn3b3g:

Eq. (29) can be solved easily and it has the solution

vmðxÞ ¼ QmRmðxÞam; (32)

where

Qm ¼ ðh1m; h2m; h3m; h4m; h5m; h6m; h7m; h8mÞ;

RmðxÞ ¼ diag½expðb1mxÞ; expðb2mxÞ; . . . ; expðb8mxÞ�;

am ¼ ða1m; a2m; . . . ; a8mÞ
T: (33)
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hsm and bsm are the eigenvector components and eigenvalues of the state matrix, respectively. asm

(s ¼ 1–8) are undetermined constant coefficients in the sublayer m. The transfer matrix Pm

(xm � dm; xm) can be used to relate the displacements, stresses, electric displacements and electric
potential at the bottom of the sublayer m to those at its top surface, i.e.,

vmðxm � dmÞ ¼ Pmðxm � dm; xmÞvmðxmÞ: (34)

As a consequence of Eqs. (32)–(34), we are able to write the transfer matrix in the form

Pmðxm � dm; xmÞ ¼ QmRmð�dmÞQ
�1
m ; (35)

where xm is located in the bottom plane of the sublayer m. dm is the thickness of the sublayer m.
Using the fundamental properties of the transfer matrix, we can find the relations as

Pðx0;xÞ ¼ Pðx0; x00ÞPðx00; xÞ:

This leads to

Pð�h; 0Þ ¼
YN
m¼1

Pmðxm � dm; xmÞ; (36)

vNð�hÞ ¼ Pð�h; 0Þv1ð0Þ; (37)

where vNð�hÞ and v1ð0Þ; respectively, are the state vectors at the upper and lower surfaces of the
layer.
4. Propagation of Love waves in a prestressed transversely isotropic piezoelectric media

The structure, shown in Fig. 2, is two thin layers deposited on a substrate, where the thin layer
SiO2 is deposited on the substrate and ZnO is deposited on SiO2 [11] (ZnO is the transversely
isotropic piezoelectric medium, with five independent elastic constants, three piezoelectric
coefficients, two dielectric constants and polarized along the z-axis and SiO2 is isotropic elastic
body with two independent elastic constants and one dielectric constant). Let the Love wave
propagate in the positive direction of the y-axis. It is assumed that there only exist prestressed
components s0

yðxÞ (s
0
22ðxÞ) and s0

zðxÞ (s
0
33ðxÞ), which are only the function of x, as shown in Fig. 2.

The other stress components and F0 are assumed to be zero. The components of mechanical
displacement and the electric potential of Love wave satisfy

u ¼ v ¼ 0; w ¼ wðx; y; tÞ; F ¼ Fðx; y; tÞ; ky ¼ k; kz ¼ 0;

where u, v and w are the components of displacement along the x-, y- and z-axis, respectively.
Then for the Love wave, Eqs. (28), (30), (31) are simplified as

vmðxÞ ¼ ðA3m;A4m;T5m;T7mÞ
T (38)
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and

BmðxÞ ¼

ikcn45 iken14 1 0

iken25 �ik2n
21 0 1

cn55 en15 0 0

en15 �2n
11 0 0

2
66664

3
77775; (39)

where (according to Eqs. (17), (19) and F0 ¼ 0)

cn45 ¼ c3231 þ c32n1u0
3;n þ c3n31u0

2;n; en14 ¼ e132 þ e13lu
0
2;l þ e132klu

0
k;l ;

en25 ¼ e231 þ e23lu
0
1;l þ e231klu

0
k;l ; 2n

21 ¼ 221 þ l21iju
0
i;j;

cn55 ¼ c1313 þ 2c13n3u0
1;n þ c1331mnu0

m;n; en15 ¼ e113 þ e131klu
0
k;l ;

2n

11 ¼ 211 þ l11iju
0
i;j (40)

and

FmðxÞ ¼

�r0o
2 þ ½cn44 þ s0

yðxmÞ�k2 en24k
2 0 0

en24k
2 �2n

22k
2 0 0

�ikcn54 �iken25 1 0

�iken14 ik2n
12 0 1

2
66664

3
77775; (41)

where

cn44 ¼ c3232 þ c3232mnu0
m;n þ 2c23n2u0

3;n; en24 ¼ e232 þ e24lu
0
1;l þ e241klu

0
k;l ;

2n

22 ¼ 222 þ l22iju
0
i;j; cn54 ¼ c1332 þ c1332mnu0

m;n þ c1331u0
3;2;

en25 ¼ e213 þ e23lu
0
1;l þ e231klu

0
k;l ; 2n

12 ¼ 212 þ l12iju
0
i;j: (42)

Eqs. (38)–(42) are the general formulae for Bm and Fm in the propagation of Love wave in the
prestressed piezoelectric media. But for ZnO and SiO2, the coefficients c45; e14; e25;221; c54; 212 are
zero and in the following discussions the initial displacement is assumed to be small. Neglecting
the smaller terms, Bm and Fm can be, respectively, simplified as

BmðxÞ ¼

0 0 1 0

0 0 0 1

cn55 en15 0 0

en15 �2n
11 0 0

2
66664

3
77775;

FmðxÞ ¼

�r0o
2 þ ½cn44 þ s0

yðxmÞ�k2 en24k
2 0 0

en24k
2 �2n

22k
2 0 0

0 0 1 0

0 0 0 1

2
66664

3
77775: (43)
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About the ceramics from 6mm class, we have c55 ¼ c44; e24 ¼ e15; 211 ¼ 222: So, the differences
between c�44 and c�55; e�24 and e�15; 2

�
22 and 2�

11 can be neglected. The eigenvalues of the state matrix
B�1

m ðxÞFmðxÞ may be obtained as

b1m;2m ¼ �k; b3m;4m ¼ �kqm; qm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

rc2 � s0
yðxmÞ

c̄55

s
; (44)

where c̄55 ¼ cn55 þ ðen15Þ
2=2n

11; c is the phase velocity and given by c ¼ o=k:
For the four eigenvalues, there are four four-component eigenvectors to compose the

eigentensor Qm:

Qm ¼

0 0 1 1

1 1 e�15=2
�
11 e�15=2

�
11

e�15k �e�15k c̄55qmk �c̄55qmk

�2�
11k 2�

11k 0 0

2
66664

3
77775: (45)

Substituting Eqs. (41) and (43) into Eq. (32), the state vector at x ¼ xm can be written as

vmðxmÞ ¼

0 0 1 1

1 1 e�15=2
�
11 e�15=2

�
11

e�15k �e�15k c̄55qmk �c̄55qmk

�2�
11k 2�

11k 0 0

2
666664

3
777775




expðkxmÞ

expð�kxmÞ

expðkqmxmÞ

expð�kqmxmÞ

2
666664

3
777775

a1m

a2m

a3m

a4m

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð46Þ

Then the transfer matrix of the sublayer m is (Eq. (35))

Pðxm � dm; xmÞ

¼

coshðkqmdmÞ 0 �
sinhðkqmdmÞ

c̄55kqm

�
e�15 sinhðkqmdmÞ

c̄55kqm2
�
11

Pð2; 1Þ coshðkdmÞ �
e�15 sinhðkqmdmÞ

c̄552
�
11kqm

Pð2; 4Þ

Pð3; 1Þ �e�15k sinhðkdmÞ coshðkqmdmÞ Pð3; 4Þ

�ke�15 sinhðkdmÞ 2�
11k sinhðkdmÞ 0 coshðkdmÞ

2
6666666664

3
7777777775
; ð47Þ

Pð2; 1Þ ¼
e�15
2�

11

½coshðkqmdmÞ � coshðkdmÞ�; Pð2; 4Þ ¼
sinhðkdmÞ

2�
11k

�
e�215 sinhðkqmdmÞ

c̄55kqm2
�2
11

;
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Pð3; 1Þ ¼ �c̄55kqm sinhðkqmdmÞ þ
e�215k sinhðkdmÞ

2�
11

;

Pð3; 4Þ ¼ �
e�15
2�

11

coshðkdmÞ þ
e�15
2�

11

coshðkqmdmÞ: (48)

It is well known that the Love wave motion is confined to the layers and region near
the substrate surface. This requires that the component of displacement w and electric
potential F remain finite when x tends to 1: Thus, the state vectors of the substrate can
be founded as

v0ðxÞ ¼ Q0

0

a20
expðb20

xÞ

0

a40
expðb40

xÞ

8>>>><
>>>>:

9>>>>=
>>>>;
: (49)

The subscript label ‘‘0’’ is designated for the quantities in the substrate. The eigentensor
of the substrate Q0 can be obtained by substitution of the material constants of the substrate into
Eq. (45).

The vector at x ¼ 0 becomes

v0ð0Þ ¼ Q0ð0Þð0; a20
; 0; a40

Þ
T: (50)

The electric potential FNþ1 and electric displacement DðNþ1Þ
x in the air (xo� h) can be

expressed as

FNþ1ðx; tÞ ¼ aNþ1 expðkxÞ exp½iðkaxa � otÞ�; DðNþ1Þ
x ¼ �20FNþ1;x; (51)

where aNþ1 is the undetermined coefficient and 20 is the dielectric constant of air.
The waves must satisfy the appropriate electrical and mechanical boundary conditions at the

surface of the layer and continuity conditions between the interface of the layer and the substrate.
The mechanical boundary conditions are

szx ¼ 0 at x ¼ �h; (52a)

½szx� ¼ 0; ½w� ¼ 0 at x ¼ 0; (52b)

where ½szx� ¼ szxþ � szx�; ½w� ¼ wþ � w� on the interface.
The metalization on the surface of the layer is assumed to consist of a perfectly conducting film

of negligible thickness and this corresponds to an electrically shorted condition. The presence of
the metal film has no influence on the mechanical boundary conditions [21]. The other case is the
surface electrically free. In these two cases the electrical boundary conditions are

Dx ¼ DðNþ1Þ
x ; F ¼ FNþ1 at x ¼ �h ðelectrically freeÞ; (53a)

F ¼ 0 at x ¼ �h ðelectrically shortedÞ; (53b)

½Dx� ¼ 0; ½F� ¼ 0 at x ¼ 0: (53c)
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The continuity conditions at x ¼ 0 can be expressed by the state vector

v1ð0Þ ¼ v0ð0Þ: (54)

From Eqs. (36), (37), (50), (54), one can obtain the state vectors at the top surface of the layer:

vNð�hÞ ¼ Pð�h; 0Þv0ð0Þ ¼
YN
m¼1

Pmðxm � dxm;xmÞQ0ð0; a20
; 0; a40

Þ
T: (55a)

Let

E ¼
YN
m¼1

Pðxm � dxm; xmÞQ0: (55b)

For electrically free surface one can get

A3N

A4N

T5N

T7N

8>>><
>>>:

9>>>=
>>>;

¼

E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44

2
6664

3
7775

0

a20

0

a40

8>>><
>>>:

9>>>=
>>>;

¼

wNþ1

aNþ1 expð�khÞ

0

�20aNþ1k expð�khÞ

8>>>><
>>>>:

9>>>>=
>>>>;
: (55c)

It can be simplified as

A4N

T5N

T7N

8><
>:

9>=
>; ¼

E22 E24

E32 E34

E42 E44

2
64

3
75 a20

a40

( )
¼

expð�khÞ

0

�20k expð�khÞ

2
64

3
75faNþ1g: (56)

Eq. (56) can be rewritten as

E22 E24 � expð�khÞ

E32 E34 0

E42 E44 20k expð�khÞ

2
64

3
75

a20

a40

aNþ1

8><
>:

9>=
>; ¼ 0: (57)

To obtain nontrivial solutions for a20; a40 and aNþ1 the determinant of their coefficients should
be vanished. The velocity is thus found by searching for the value of c that makes the determinant
of the coefficient matrix equal to zero. So phase velocity equation for the electrically free case is

ðE42 þ k20E22ÞE34 � ðE44 þ k20E24ÞE32 ¼ 0: (58)

In a way similar to the electrically shorted case, we obtain a set of two homogeneous equations
for the electrically shorted case:

A4N

T5N

( )
¼

E22 E24

E32 E34

" #
a20

a40

( )
¼

0

0

� �
: (59)

The phase velocity is obtained when the coefficient determinant of a20 and a40 vanishes, or

E22E34 � E32E24 ¼ 0: (60)
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5. The distributions of the initial stresses

The initial stresses in layers exist due to the manufacturing process or other reasons. The initial
stresses s0

yZnO
; s0

zZnO
; s0

ySiO2

; s0
zSiO2

must satisfy certain relations on the interface. At the interface
between the SiO2 layer and the ZnO, the initial displacements u0; v0 and their derivatives in the
interface must be continuous, so the strains satisfy

�0yZnO
¼ �0ySiO2

¼ �0y;

�0zZnO
¼ �0zSiO2

¼ �0z ;

�0yzZnO
¼ �0yzSiO2

¼ �0yz: (61)

Because the material ZnO is transversely isotropic and SiO2 is isotropic, then at x ¼ �h1 we have

s0
xZnO

¼ c11�
0
xZnO

þ c12�
0
y þ c13�

0
z ¼ 0;

s0
yZnO

¼ c12�
0
xZnO

þ c11�
0
y þ c13�

0
z ; s0

zZnO
¼ c13�

0
xZnO

þ c13�
0
y þ c33�

0
z ;

E�0y ¼ s0
ySiO2

� ns0
zSiO2

; E�0z ¼ s0
zSiO2

� ns0
ySiO2

; (62)

where c11; c12; c13; c33 are elastic coefficients of ZnO and E, n are the modulus of elasticity and
Poisson’s ration of SiO2, respectively. According to Eq. (62), at x ¼ �h1 one obtains the following
relations:

s0
yZnO

ð�h1Þ ¼
c2
11 � c2

12 � nc13ðc11 � c12Þ

Ec11
s0

ySiO2

ð�h1Þ þ
c13ðc11 � c12Þ � nðc2

11 � c2
12Þ

Ec11
s0

zSiO2
ð�h1Þ: (63)

In the following, for convenience, it is assumed that s0
zSiO2

ð�h1Þ ¼ Ls0
ySiO2

ð�h1Þ ¼ Lsð1Þy ; where L

is a proportional coefficient of s0
zSiO2

ð�h1Þ to s0
ySiO2

ð�h1Þ: Then we can get

s0
yZnO

ð�h1Þ ¼ asð1Þy ;

a ¼
ð1� LnÞðc2

11 � c2
12Þ þ c13ðL � nÞðc11 � c12Þ

Ec11
: (64)

s0
zZnO

can also be obtained from the third of Eq. (62), but it is not discussed here because it does
not enter Eq. (43) in the present special case. We assume that the initial stresses s0

yZnO
; s0

ySiO2

and
s0

zSiO2
are only the exponential functions of x and they are similar functions, which reach the

maximum at the top surface of layer ZnO and are zero at the substrate, as shown in Fig. 2.
When h1a0

s0
ySiO2

ðxÞ ¼ f ðxÞ ¼
sð1Þy

e�h1 � 1
ðex � 1Þ; �h1pxp0;

s0
yZnO

ðxÞ ¼ gðxÞ ¼
sð2Þy

e�h � 1
ðex � 1Þ; �hpxp� h1; (65)

where sð2Þy ¼ s0
yZnO

ð�hÞ:
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According to Eqs. (64), (65) one obtains

s0
ySiO2

ðxÞ ¼ f ðxÞ ¼
sð2Þy

aðe�h � 1Þ
ðex � 1Þ: (66)

When h1 ¼ 0

s0
yZnO

ðxÞ ¼ gðxÞ ¼
sð2Þy

e�h � 1
ðex � 1Þ: (67)

When there are no initial stresses, the phase velocity c of Love waves is

ðcshZnO
; cshSiO2

ÞminococshSi
;

where

cshZnO
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc55 þ e2

15=211Þ=rZnO

q
;

cshSiO2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mSiO2

=rSiO2

p
and cshSi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mSi=rSi

p
; respectively, are the shear bulk velocities of the ZnO,

SiO2 layer and the substrate.
6. Numerical examples

In the following numerical examples h2 is fixed and equal to 1
 10�5 m: By changing the value
of h1 in a wide range and sð2Þy ; we can obtain a series of phase and group velocities. From the
results it is seen that the phase and group velocities can be adjusted in a larger range when the

SiO2 layer exists. The material constants are shown in Tables 1 and 2 and cshSi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mSi=rSi

p
¼

5840m=s; cshSiO2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mSiO2

=rSiO2

p
¼ 3765:9m=s; cshZnO

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc55 þ e2

15=211Þ=rZnO

q
¼ 2841:5m=s:

Figs. 3a and b show the relations between the phase velocity c0; group velocity cg0
of the Love

wave and kh; respectively, for the electrically free case without initial stress, where cg0 ¼
do
dk ¼
Table 1

Material constants of ZnO

Density ð103 kg=m3Þ Elastic constants ð1010 N=m2Þ Piezoelectric constants (C/m2) Dielectric constants (10�10 F=m)

r c11 c12 c13 c44 e15 e31 e33 211 233

5.665 20.96 12.05 10.46 4.23 �0.48 �0.573 1.321 0.67 0.799

Table 2

The Lame’ constants of Si and SiO2

Material Lame’ constants (1010 N=m2) Density ð103 kg=m3Þ Dielectric constants ð10�10 F=mÞ

l m r 211 233

Si 16.57 7.94 2.328 1.035 1.035

SiO2 7.85 3.12 2.2 0.33 0.33
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Fig. 3. (a) Phase velocity with kh for the electrically free case without initial stresses and L ¼ 1; (b) group velocity with

kh for the electrically free case without initial stresses and L ¼ 1:
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Fig. 4. Variations of velocity change ðc0 � cg0
Þ=c0 with kh for the electrically free case without initial stresses.
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dðc0kÞ
dk ¼ c0 þ k dc0

dk (the cg0 curves are not smooth due to the differentiation, dc0=dk; in it). In these
cases the phase and group velocities will decrease with the increasing kh for a given value of h1 and
the curves tend asymptotically to a horizontal line as kh ! 1: These results show that the
velocities of the Love wave are a function of kh; i.e. Love wave is a dispersion wave in a layered
structure. For all h1 values we have c ! cshSi

for kh ! 0: For kh ! 1 we have c ! cshZnO
when h1

is the same or less than the order of h2: But c will approach cshSiO2
when h1 is much larger than h2

and this means that in this case the layer has the property as SiO2. The thickness h1 of the middle
layer SiO2 affects the phase and group velocities significantly and they increase with increasing h1:
So, by adjusting h1 we can change the velocities in a wide range than that in the case without the
middle layer.
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Fig. 5. (a) Variations of phase velocity change Dc=c0 with kh and sð2Þy ¼ þ200MPa for the electrically free case, (b)

variations of phase velocity change Dcg=cg0 with kh and sð2Þy ¼ þ200MPa for the electrically free case.
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Fig. 6. Variation of the electromechanical coupling coefficient k2 with sð2Þy and h2 ¼ 1
 10�5 m:
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Fig. 4 shows variations of ðc0 � cg0
Þ=c0 with kh for the electrically free case without initial

stresses. In the discussed cases the difference between c0 and cg0 achieves its maximum value in the
range 0:5okho2: When h1=h2 ! 0 or 1 the difference between c0 and cg0 has a smaller value
compared with finite h1=h2: So, the energy propagation velocity is obviously slower than the phase
velocity when h1 has the same order as h2:

Figs. 5a and b show the relations of relative variation of the phase velocity Dc=c0 and group
velocity Dcg=cg0

with kh for the case with initial stresses. When the initial stress is positive stress, in
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general, the value of Dc=c0 and Dcg=cg0
increase with increasing kh and the curves tend

asymptotically to a horizontal line as kh ! 1; where Dc ¼ c � c0; Dcg ¼ cg � cg0
: c, c0 and cg; cg0

are phase and group velocities with and without initial stress, respectively. It is seen that h1=h2 !

0 or 1; Dc=c0 or Dcg=cg0
is smaller than that of finite h1=h2: The maximum value is arrived when

h1=h2 have the same order.
Fig. 6 shows the variation of the electromechanical coupling coefficient k2 with sð2Þy and h1:

k2 ¼ 2ðcf � csÞ=cf ; where cf and cs are the phase velocities of electrically free and shorted cases,
respectively. Dk2 ¼ k2 � k2

0; where k2
0 is the value of k2 in the case without initial stress. When the

initial stress and the thickness of the middle layer (SiO2) increase the value �ðDk2=k2
0Þ

increases, too. It is also found that the relation cs with kh is similar to cf ; but cf is larger than cs at
the same kh:
7. Conclusions

Generally, we use the fractional change in phase Df=f; frequency Df =f or velocity Dc=c to
reflect the acoustoelastic effect of surface acoustic waves. They are given by the relations Dc=c ¼

sp � Df=f and Dc=c ¼ Df =f ; where sp is the strain in the direction of propagation. Df=f can be
measured by the phase shift detection technique. So, it is valuable to compute the phase velocities.

In this paper, the fundamental governing equations and boundary conditions Eqs. (20) and
(21), for a general prestressed piezoelectric media under finite deformation, are established. The
global state vector equations (38)–(42) for Love wave in the layer prestressed piezoelectric
materials are also established. Under the small prestressed conditions the variations of phase
velocity, group velocity and coupling coefficient with the thickness of middle layer and initial
stress are discussed in detail. The theoretical and numerical results of this paper are meaningful
and helpful to improve the behavior of the SAW devices.
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