Available online at www.sciencedirect.com

. JOURNAL OF
} scmncs@mnscr SOUND AND
A = VIBRATION
LSEVIER Journal of Sound and Vibration 286 (2005) 981-999

www.elsevier.com/locate/jsvi

Love wave in ZnO/Si10,/Si structure with initial stresses

* .
J. Su, Z.B. Kuang™, H. Liu
Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai 200240, PR China

Received 4 August 2003; received in revised form 4 August 2004; accepted 25 October 2004
Available online 5 January 2005

Abstract

The propagation of elastic waves in the layered piezoelectric media with inhomogeneous initial stresses
was analyzed through the method of transfer matrix. Firstly, the governing equations of motion for the
prestressed piezoelectric media are derived on the basis of the nonlinear continuum mechanics. Secondly,
the transfer matrix for the Love waves in the piezoelectric media (ZnO/SiO,/Si structure) is presented.
Solutions are obtained by the transfer matrix method. Thirdly, numerical calculations are given for the
ZnO/Si0,/Si structure. It is found that the middle layer SiO, and the initial stress in layers affect the phase
velocity, group velocity and electromechanical coupling coefficient obviously. These results are important
in the surface acoustic wave devices.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Investigations on the propagation of elastic waves, especially the surface acoustic wave, in
layered piezoelectric media have been of great interest since films deposited on supporting
substrates are generally a requisite for acoustic devices [1]. Typically, a layered structure consists
of two, three or arbitrary layers of different materials. The direct method is complex for a
multilayer structure. For a layered media with arbitrary layers, the transfer matrix method is a
simple and powerful technique to analyze wave phenomena. The transfer matrix method was first
presented by Thomson [2]. Liu et al. [3] applied this method to anisotropic laminates. Following
their work, there were many works with this method. The main developments of the matrix

*Corresponding author. Tel.: +862154743067; fax: + 8621 54743044.
E-mail address: zbkuang@mail.sjtu.edu.cn (Z.B. Kuang).

0022-460X/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2004.10.040


www.elsevier.com/locate/jsvi

982 J. Su et al. | Journal of Sound and Vibration 286 (2005) 981-999

techniques can be attributed to Liu and Tani [4], Stewart and Yong [5], Levesque and Piche [6],
Lowe [7], and Liu et al. [8].

The initial stresses in the film are inevitable and important because they may result in frequency
shift, a change in the velocity of surface waves and controlling the selectivity of a filter and
temperature compensation of the devices. The elastic wave propagation in a homogeneously
stressed medium has been investigated by Nalamwar and Epstein [9]. Ono et al. [10] discussed the
surface acoustic wave in a three layered structure without initial stress. It is, however, well known
that in most practical situations the actual initial stresses have maximum values at the surface of
the film and decrease rapidly along the thickness direction of the film structure. Many researchers
[11,12] resorted to the perturbation theory to treat the inhomogeneous initial states. The present
study involves the application of the transfer matrix method to analyze the effect of initial stress
on the Love wave mode and dispersion behavior in a layered piezoelectric ceramic with thin layers
deposited on a relatively thick substrate. Most Love wave sensors are fabricated on this kind of
structure and have many applications, such as measuring properties of liquids [13]. The middle
layer in a multi-layer structure can be used to adjust the range of phase velocity of SAW and to
improve its property, such as ZnO/SiO,/Si [14,15] structure and ZnO/Diamond/Si structure [16].

2. Equations of motion in the prestressed piezoelectric media

When a continuum medium undergoes deformation, the deformation and motion of a material
point can be described by [17]

e =xi(Xx,0), K=LILIIL k=123, (1)

where the capital letter X denotes a particle position at the natural undeformed configuration and
the lower letter x denotes its position at current configuration. The capital and lower subscripts K
and k denote the components in the Lagrangian coordinate system at undeformed configuration
and the Eulerian coordinate system at current configuration, respectively. ¢ denotes time. Eq. (1)
may be interpreted as a mapping of the natural configuration on the current configuration. The
gradient equations are

EK = —QD’K’ (2)

exr = 3 (Xkx Xk — OkL). (3)

It is well known that the basic equations in the undeformed configuration are [17] the equations
of motion:

(okLx1L).x + Pof 1 = Potii, (4a)
the electric displacement equation without volume charge
Dgx =0 (4b)

and the associated boundary conditions:

okLxi Nk =2, on Ar, (5a)

DxNg = g* on Aq. (Sb)
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The displacement and electric potential boundary conditions are not discussed. Therefore, they
are not given in this paper.

In Egs. (2)—~(5), o stands for the second Piola—Kirchhoff stress tensor, € is the Green strain
tensor, D and E are the electric displacement and electric field vectors, respectively, p, is the mass
density, A7 and A4, denote the boundary surfaces subjected to external mechanical force and
electrical charge, respectively. f is the force per unit mass, X; and ¢* are, respectively, the applied
surface traction and surface electric charge density, @ is the scalar electric potential. All the above
variables are measured at the natural configuration. dg; is the Kronecker delta; a comma at the
subscript position denotes the differentiation with respect to the space-coordinate, a dot over the
letter denotes the time differentiation.

In practical cases, a mechanical biasing state produced by initial stress is in an equilibrium state.
The initial stresses are produced in the manufacturing process. All the physical variables in the
biasing state are designated by a superscript label “0”’. According to Eq. (4), the equations of
equilibrium at the initial biasing state are written as [§8,17]

(ke X))k +pof] =0, Dy = (©)
and the material gradient is
X)p = 0w +up. (7)
Substituting Eq. (7) into Eq. (6), it is found that
(0%.0 + % 1) ok + pof] = 0. ()

Under the applied external dynamic mechanical and electrical loads, the body is further
perturbed by an additional wave motion of small amplitude onto the biasing state. Let

‘ 0 t_ 0 t 0
Ok =Ok; + 0k, uy=1u; +u, Dy=Dyg+ Dk, )

where o%, and D} are the total Kirchhoff stress and total electric displacement referred to the
natural state and u; is the total displacement component at Euler coordinate system. u;, og; and
Dg are their incremental values due to the dynamic disturbance or applied signals superposed
onto the biasing state. Then the equations of motion may be expressed as

(6%, + oke)on + (6%, + oxke)Wf ; + u)lx + po(f] +£1) = poiir. (10)

Subtracting Eq. (8) from Eq. (10), we obtain the expected equation of perturbed motion in the
natural configuration

(okLdiL + oxeu) + w10, + OkLuL).x + pof 1 = Poiil- (11

Due to the fact that gy is small compared to O'(])(L and u; is small compared to u?, their product
term oxru; . 1s negligibly small and will be dropped. Eq. (11) is reduced to

(UKL(SZL + UKLM?,L + ul,LO-(I)(L)’K + pof, = poﬁ]. (12)

This is the governing wave equation of the applied signal or a perturbation in the form of a second
Piola—Kirchhoff stress.
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In practical calculation, the Eulerian coordinate system is adopted to coincide with the
Lagrangian coordinate system for convenience. Thus Eq. (12) can be rewritten as

(O-Ij + gl'ku]('),k + uj,ko-?k)ai + pOf/ = pOuj’ i5j>k = 172, 3 (13)

The electric displacement equation (4b) and associated boundary conditions (5) can also be
written as

0 0 —_.
(O-ij + OikU i + uj,kaik)Ni = Zj on Ar,

(14)
D;N; =o* on Ay,

where D;, 2; and ¢* are corresponding increments due to the dynamic disturbance superposed on
the biasing state.
The constitutive equations are [17-19]

! Jz 1 t .t t t t 1 t t
0jp = Cijkl&ly + 3 Cijklmn&g & — €mifEy — migkt&ig Eyy — 3 bunig Ey By o0,

t t 1 t .t t 1 t ot t .t
D, = emij€i; + 5 Cmijki €€ + €EmkE, +5 emannEp + lmnijEnglj + h.o.t, (15)

where i, j, k, I, m, n, p =1,2,3, cjxz and cjjximn are the second- and third-order elastic constants,
respectively, e,,; and e, are the second- and third-order piezoelectric constants, respectively,
€mn and €, are the second- and third-order dielectric constants, respectively, and /,,; is the
electrostrictive constant.

The constitutive equations for the biasing state are

0 0 1 0.0 0 0 -0 1 0 70
0jj = Cijki€p; + 3 Cijllmn i — enlijEnz - emijkl‘c’.klEm - El"lnyEmEn +h.o.t,

0 0 1 0.0 0, 1 0 170 0,0
Dm = emijéij + Zemijklb,‘j&k] + emnEvn + b emannEp + lmnijE &; + h.o.t. (16)

n®i

From the difference of Eqgs. (15) and (16), and on expressing the strain tensor and the electric
field in terms of the displacement and electric potential gradients, respectively, one can derive a
constitutive equation for the incremental stress tensor ¢;; and electric displacement D,,. Neglecting
the higher order terms we have,

Oij = Cijtatiic] + Cmij P m,

Dm = e* ul-J- — E;i;mé’n, (17)

mij
where
A 0 0 A 0 0
Cijkl = Cijkl + (Cijnlékm + Cijklmn)um,n + enﬂjkl‘p,ma Cmij = Cmij + emi/'kluk,[ - lmnijgp,n:

* 0 0 * 0 0
em!‘j = Cmij + (emz'léjk + emijkl)”kJ - lmnij@,na €,m = Emn + lmnij“w‘ - emnpgb,p- (18)

Substituting of Eq. (17) into Eq. (13), one obtains
(@it + CinkiOjmthy, i + €@ + Ui k0% )i + Pof; = Poly- (19)
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If we denote c* = = Ciju + c,,,k;éjmu then Egs. (13) and (14) can be rewritten as

(o + ko) + pof; = poilj, (20a)
D;; =0, (20b)

(0} + N, = T, 200
D;N; = ¢*, (20d)

where a;; is not the true ¢; and

0,] = Cl]klukl + eml]@sm = 0j + ka/u ]ukl + emiru [@5}1’13

Dm = e;knijulJ €, ¢an) (21)

mn

where ¢}y, e,; and €, are effective elastic, piezoelectric and dielectric constants, respectively, and
they are related to the initial displacement and electric potential gradients in the biasing state. If
1) is small, then o7 i = oy In the following text for convenience, }; is replaced by oy, but it should
be noted that they are different from those ¢;; in previous equatlons
Egs. (20) and (21) are the fundamental governing equations and boundary conditions of

applied signal or perturbation for a general prestressed piezoelectric media.
3. Transfer matrix method
In this paper we discuss that the structure is made up of two layers with thickness of /; and &,

(h1 + hy, = h), respectively, which are normal to the x-axis and a substrate, as shown in Fig. 1. The
symbols x, y, z are employed to represent the rectangular Cartesian coordinate system, which are

h Vacuum N+1
XN N
XN-1 Sub-layer N-1
. . Layer2
Xm-l
Xm m
X, 2 Layerl
X,=0 L v
Substrate 0 0
X

Fig. 1. The layer structure divided into N sublayers.
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Vacuum Initia stress

0
JY
h,
N Layer2 ZnO 9(x)
h f(X
t Layerl SO, )
! 0 y
Substrate Si

X

Fig. 2. Three layer structure.

equivalent to the compact form of the indicial notation x; (i = 1,2, 3). The layers are in the region
—h<x<0 and the substrate x>0. The top surface of the layer x = —/ is free of stresses and
charge. There exist inhomogeneously distributed initial stresses in the layers. Experiments show
that the initial stresses vary along the depth x and get their peak values at the surface x = —/ or
—hy, as shown in Fig. 2. The thickness of the substrate is considerably larger than /4 and can be
treated as a half-space. The layers can be further divided into N sublayers. 1—m sublayers belong
to layer 1, m + 1-N sublayers belong to layer 2. The half-space noted 0 is the substrate and the air
is denoted by layer N + 1 (Fig. 1).

The transfer matrix method is used to solve the problem [5]. The basis for the transfer matrix
method is to develop a transfer matrix for each sublayer m, which maps displacements, stress
tractions, electric potential and electric charge from the lower surface of the sublayer m to its
upper surface. Successive application of the transfer matrix through 0 to N + 1 and invoking
corresponding interface continuity conditions at their interfaces lead to a set of equations relating
the boundary conditions from the first interface to the last interface. After introducing the
external boundary conditions at the last interface, the transfer matrix is founded.

We will utilize a state space approach, which is a kind of transfer matrix method [20]. This
approach reduces the wave propagation problem to a set of first-order matrix differential
equations. According to Eq. (20a), in every sublayer we have

. 0 0 ..
Oil1 = Poli; — o — 033 — UikjOy; — UikOpy ;s LJj,k=1,2,3 (22)

when the body force is absent.
The constitutive relation equation (21) for the piezoelectric media can be rewritten as

Tif = Chpipds
Di=e;;;[up,la 13]512 1,2,3’ p: 13273,45 (23)
where uy = @, and Ciag = €y €1y = —€5. In all the following statements we define p = 1,2, 3,4,
i,j,l=1,23and a, B,y = 2,3.

If we identify the plane of incidence to be the plane yz as shown in Fig. 1, the solution is

u, = Ap(x)expli(k,y + K.z — wt)] = A,(x) expli(ic,x, — wi)], (24)
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where i = v/ —1, k, and «. are wave numbers in the y and z directions, respectively, and w is the
circular frequency.
Substitution of Egs. (23), (24) into Eq. (22) results in

o1 = [—pow’A; — ikp(Cig Apt + 1K, Ap) — Ained, — iK«,2A,~,10'(1)},
+ Kpicy0p, Ai — o9y Ay — gy Al expli(ic,x, — wi)]. (25)
As a matter of fact, the stresses between layers ¢, ¢%,, ¢¥; are small and can be dropped. Let

ojj = 0;(x) exp[i(ryx, — wi)],

Dy = Tiy(x) expliCic,x, — o) (26)
Eq. (25) can be rewritten as
A = (—pow* + Kﬁ}c},agy — iK,;q?ﬁJ)A,- + Kl;;cyc;‘ﬁpyAp. (27a)

~ : * 0
i1 +iKkpCip Ap1 + 05

Egs. (20b) and (23) can be written in a similar way as

To1 + ikpefy Apy = K€, Ap, (27b)
A Apr = Gj1 — lpctpdp, (27¢)
eipAps = T7 —irge p4p. (27d)

In order to express Egs. (27) as a matrix, let
0, = Ty(x)expli(k,x, —wt)], n=12,...,6,

where ¢, (n=1,2,...,6) represents c11(0y), 02(0),), 033(0-), 032(0,:), 031(0-x) and oi2(oyy),
respectively. The terms (6;;) in Egs. (27a), (27¢) are replaced by T, T and T's, respectively, as i
changes from 1 to 3.

Egs. (27) are the state equations and in a state space eight-dimensional unknown vectors can be
defined as

Vm(x) — (Alm, A2ma A3m, A4m> Tlma T6m, TSma T7m)T, (28)

where v is the state vector, the subscript “m’” indicates the quantities in the sublayer m. Then, Eq.
(27) can be expressed as

<Bm(x> a4 Fm(x)> V() =0 or (% - B,;l(x>Fm<x>> V) = 0, (29)
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where B;ll(x)Fm(x) is the state matrix of the sublayer m, where

[B,,(1,1) iKﬁc’fﬁz] irc/gc”l‘ﬁ31 iK/;c’l“ﬁm 1 0 0 O

ikpclp Bm(2,2)  ikpclpy  irpcsg, 001 00

iKﬁcg"ﬁ” iK/;c’;ﬁz] B,.(3,3) irc/;cg“ﬁm 0 01 0

B, — iK[j‘e;u ikie’;zl iKiezM ikie§4l 0 0 0 1
i 1121 1131 i 00 0 0

Ty i Cinai ey 00 00

T3 ey I3 G 0.0 00

i € el e 0.0 00

B.(1,1) = o, +irpcip,  Bu(2.2) =0}y +iKpcipy, Buw(3,3) = oy, + irpciy),

[ Fau(L 1) kprycigy,  KpicpClps,  Kprycip, 00 0 0]

Kﬁrcyc’;/m F,.(2,2) Kﬁxyc’zkﬁ3y Kﬁfo,c’z"ﬁ4y 0 00 O
KpKy gy, KpiyCGpn, Fm(3,3)  wpryclp, 00 0 0

_— K'/;K«,efly K./;K«,efz}, K.[;Kyef3y K.[;Kye}w 0 0 00
—IKpClyp  —IKpCTIap  —IKpCT3p  —lkpciyg 10007
—inpclyg  —ikpClyy  —ikpclyyy  —ikpclyy 01 00
—inpciyg  —iRpciy  —ikpcissy  —iKkpcisg 000 10
—iKﬁeTlﬁ —i;cﬁej"zﬁ —i;c,;e’{‘w —irc/;e’l"4ﬁ 0 0 0 1

F,.(1,1) = —p,»® + K/;K«/-O’%v — izc,;anﬂJ + K/;Kyc’fﬁh,,

Fiu(2,2) = —po’ + Kgiy o, — ikpajy; + Kpr,Cap,,

Fin(3,3) = —po@” + Kpic,0p, — iKpoty ; + Kkpic,Chgs,.
Eq. (29) can be solved easily and it has the solution
Vin(X) = QuRim(xX)ay,
where

Qm = (hlm: h2m, h3ma h4m: hSrm hém: h7m> hSm),
Rm(x) = diag[exp(blmx)a CXp(bsz), cees exp(bSHzx)]a

T
ay = (alm, Ay - v - 7a8m) .

(30)

(1)

(32)

(33)
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hg, and by, are the eigenvector components and eigenvalues of the state matrix, respectively. ag,,
(s = 1-8) are undetermined constant coefficients in the sublayer m. The transfer matrix P,
(x,, — d, X;y) can be used to relate the displacements, stresses, electric displacements and electric
potential at the bottom of the sublayer m to those at its top surface, i.e.,

Vm(xm - dm) = Pm(xm - dm, xm)vm(xm)- (34)
As a consequence of Egs. (32)—(34), we are able to write the transfer matrix in the form
Pm(xm - dm, xm) = QmRm(_dm)Q;zl, (35)

where x,, is located in the bottom plane of the sublayer m. d,, is the thickness of the sublayer m.
Using the fundamental properties of the transfer matrix, we can find the relations as

P(X', x) = P(xX', xX")P(x", x).
This leads to

N
P(—1,0) = ] PuCin — dms xm), (36)

m=1

Vv (=h) = P(=h,0)v1(0), (37

where vy(—h) and v(0), respectively, are the state vectors at the upper and lower surfaces of the
layer.

4. Propagation of Love waves in a prestressed transversely isotropic piezoelectric media

The structure, shown in Fig. 2, is two thin layers deposited on a substrate, where the thin layer
Si0, is deposited on the substrate and ZnO is deposited on SiO, [11] (ZnO is the transversely
isotropic piezoelectric medium, with five independent elastic constants, three piezoelectric
coefficients, two dielectric constants and polarized along the z-axis and SiO, is isotropic elastic
body with two independent elastic constants and one dielectric constant). Let the Love wave
propagate in the positive direction of the y-axis. It is assumed that there only exist prestressed
components o (x) (69,(x)) and ¢%(x) (033(x)) which are only the function of x, as shown in Fig. 2.
The other stress components and @° are assumed to be zero. The components of mechanical
displacement and the electric potential of Love wave satisfy

u=v=0, w=wxy1, D®=>(x,p,1), K, =xr K =0,

where u, v and w are the components of displacement along the x-, y- and z-axis, respectively.
Then for the Love wave, Egs. (28), (30), (31) are simplified as

Vm(x) = (A3rm Asm, Tsp, T7m)T (38)
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and
ikch;  ikef, 1 0
el —ixel, 0 1
B,u(x) = (39)
sk k ’
c5s el's 0 0
sk %k
el's -, 0 0
where (according to Egs. (17), (19) and ¢° = 0)
” 0 0 * 0 0
Cys = 3231 + 3ol U3 , + C3p31U,, €14 = €132 + €13/Uy | + €132k1Uy 5
€ 0 0 * 0
€55 = ex31 + ey + ety €3 = €21 + Ly,
€ 0 0 € 0
€55 = €1313 + 2C1303U) , + C1331mnby, s €15 = €113 + €131kl s
* 0
€11 =€11+1111'J'M,-J (40)
and
2 & 0 2 % 2
—pow” +[¢hy + oy (xm)l”  eyx” 00
% 2 % 2
}71(x) - . % . % b ( )
—1KcS, —ike5s 1 0
—ike?, ike¥, 0 1
where
= Cronr + 0 49 0 x n 0 4 0
44 = €3232 T €3232mnly,, 5, C23n2U3 5 €4 = €232 T €24/U) | T €241kIU s
* 0 * 0 0
€5 = €xn +lnjlt;;, 54 = 1332 + C1332mmlly, , + C1331U3 5,
* 0 0 - L1910 42
€5 = €213 + ey + ekl €7y = €12 + Lol (42)

Eqgs. (38)—(42) are the general formulae for B,, and F,, in the propagation of Love wave in the
prestressed piezoelectric media. But for ZnO and SiO,, the coefficients cus, €14, €25 €21, €54, €12 are
zero and in the following discussions the initial displacement is assumed to be small. Neglecting
the smaller terms, B,, and F,, can be, respectively, simplified as

0 0 1 0
0 0 0 1
Bu(x) = C>51=5 eTS 0 0l
efs —€n 0 0
—po@* +[cly + AVxn)l? ehyn?
&4, .2

Fy(x) = (43)

0 0
0 0

|

m

(S

(3]

b
S — o ©
—_ o o o
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About the ceramics from 6 mm class, we have ¢s5 = cas, €24 = €15, €11 = €. So, the differences
between ¢}, and cis, €54 and es, €3, and €], can be neglected. The eigenvalues of the state matrix
B;,l(x)Fm(x) may be obtained as

2 0
pe* — o) (Xm)
b1m,2m = :l:Ka b3m,4m = :I:qua 9 = \/1 - ijm’ (44)

where 55 = c¥; + (¢%)?/€¥,, c is the phase velocity and given by ¢ = w/x.
For the four eigenvalues, there are four four-component eigenvectors to compose the
eigentensor Q,,:

0 0 1 1
1 1 eis/€l  €s/€n
Q, = et —e* K & _ A (45)
15 15 55qmK €554 mk
Substituting Egs. (41) and (43) into Eq. (32), the state vector at x = x,, can be written as
0 0 1 1
1 1 s/l €is/€h
Vin(Xm) = " % _ _
_GTIK GT]K O 0
exp(xXx,,) Aim
exp(—Kxy,) Aom
X . (40)
eXp(KQmXWZ) A3m
CXp( —Kq,, xm) A4m
Then the transfer matrix of the sublayer m is (Eq. (35))
P(xm - dm: xm)
[ cosh(rcq,,d ) 0 - Sinlj(qudm) s ?inh(qu:dM) ]
Cs55Kq,y, C55Kq,, €11
et sinh(kq,,d,;)
P(2,1 h(xd — P(2,4
= (2,1) cosh(xd,,) v (2,4) .47
P(3,1) —ejsx sinh(kd,,) cosh(kq,,d) P(3,4)
| —Kejssinh(kdy,) €7k sinh(xd,y) 0 cosh(xd,,)

* inh(xd,, *2 sinh dn
P, 1) = 415 [cosh(icq,,dn) — cosh(ed,)], P2, 4) = Sm00edn) _ €5 Sinh(eg,,d)
€% " €K 55K, €11

b
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*2 : h d
PG, 1) = —Cssiq,, sinh(icq, dy) + %(K"’)
11
P(3,4) = — ? cosh(d,,) + Zﬁ cosh(icq,,dp). (48)

11 11

It is well known that the Love wave motion is confined to the layers and region near
the substrate surface. This requires that the component of displacement w and electric
potential ¢ remain finite when x tends to co. Thus, the state vectors of the substrate can
be founded as

0

b
W =Qyd o PO L (49)

as, eXp (b40 X)

The subscript label “0” is designated for the quantities in the substrate. The eigentensor
of the substrate Q, can be obtained by substitution of the material constants of the substrate into
Eq. (45).

The vector at x = 0 becomes

vo(0) = Qy(0)(0, az,, 0, ay,) " (50)

The electric potential @y, and electric displacement DfYN*” in the air (x< —h) can be
expressed as

Dy11(x, 1) = anq1 exp(kx) expli(ie,x, — )], DNV = —gody.y,, (51)

where ay. is the undetermined coefficient and € is the dielectric constant of air.
The waves must satisfy the appropriate electrical and mechanical boundary conditions at the
surface of the layer and continuity conditions between the interface of the layer and the substrate.
The mechanical boundary conditions are

0.,=0 atx=—h, (52a)

[6:x]=0, [w]=0 atx=0, (52b)

where [0.x] = 0.x4 — 01—, [W] = wy — w_ on the interface.

The metalization on the surface of the layer is assumed to consist of a perfectly conducting film
of negligible thickness and this corresponds to an electrically shorted condition. The presence of
the metal film has no influence on the mechanical boundary conditions [21]. The other case is the
surface electrically free. In these two cases the electrical boundary conditions are

D, =DV, ® =y, atx=—h (electrically free), (53a)
® =0 at x = —h (electrically shorted), (53b)

[D,]=0, [#]=0 atx=0. (53¢)
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The continuity conditions at x = 0 can be expressed by the state vector
v1(0) = vo(0). (54)
From Eqgs. (36), (37), (50), (54), one can obtain the state vectors at the top surface of the layer:

N
v (=h) = P(=1,0%0(0) = [ ] P — dxims ) Qu(0, 2y, 0, ). (55a)

m=1

Let

N
E= H P(xm — dx, xm)QO- (SSb)

m=1

For electrically free surface one can get

Asn Ey Epn Ep;3 Eny 0 WN41
Ay Eyy Ey Ex Ey a an1 exp(—rxh) (550)
_ = ) c
Tsy Ey Ex Esxz Ey 0 0
T7n Ey Ep Ei Ey 40 —€pan+1k exp(—«h)
It can be simplified as
AN E» Exy p exp(—xh)
2
Tsy y = | Ezn Ex { a40 } =10 {an 1} (56)
T7y Ep Eyu ’ —€ok exp(—xh)
Eq. (56) can be rewritten as
Ey Ey  —exp(—kh) a
Ezn Ex 0 asp » =0. (57)

Ep Eu €k exp(—xh) | | avp

To obtain nontrivial solutions for ay, a4 and ay, | the determinant of their coefficients should
be vanished. The velocity is thus found by searching for the value of ¢ that makes the determinant
of the coefficient matrix equal to zero. So phase velocity equation for the electrically free case is

(Eqx + K€0E2)E3y — (E4g + k€0 E24)E3p = 0. (58)

In a way similar to the electrically shorted case, we obtain a set of two homogeneous equations

for the electrically shorted case:
Ay a 0
= = . 59
{TSN} {CMO} {0} (59)

The phase velocity is obtained when the coefficient determinant of ayy and a4y vanishes, or

Ey Ey
Ey Exy

Ex»nEsy — EnEry =0. (60)
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5. The distributions of the initial stresses

The initial stresses in layers exist due to the manufacturing process or other reasons. The initial
stresses a;) , o) . 00_ o). must satisfy certain relations on the interface. At the interface
between the SiO, layer and the ZnO, the initial displacements «°, v° and their derivatives in the

interface must be continuous, so the strains satisfy

0 _ 0 _0
Yzno ~ “Vsio,
0=, =2
Z7Zn0 “8i0, z
0o _ 0 _ 0
gm0 = EJ’ZSioz = &yz (61)
Because the material ZnO is transversely isotropic and SiO, is isotropic, then at x = —h; we have

0

X700 Vz o + 6128 + CHS =0,

0 _ 0 0 0 0 _ 0 0
0y, .= Céy,  t+cng, + e, o, = (:138AZ o T C13¢, + €338,
o_ 0 _ 0 o_ 0 _ 0
Eey = o'ySiO2 V0 0, Ee. = T 50, VGYSiOZ’ (62)

where c¢11, ¢12, €13, ¢33 are elastic coefficients of ZnO and E, v are the modulus of elasticity and

Poisson’s ration of SiO,, respectively. According to Eq. (62), at x = —h; one obtains the following
relations:
2
— ¢y — ves(en — ¢) 5 ci3(enn — c) —v(ef) — ¢f) 5
yZnO(_ 0= Ecqy J’slo (=h1) + Eci, ”slo (=hp). (63)

In the following, for convenlence it is assumed that 0750 (=h) = Layso

(—h) = Log), where L
is a proportional coefficient of 0 ( hy) to a ( hy). Then we can ge

}ZnO(_ 1) = ao-(l)
_d= Lv)(c, — ¢1,) + ei3(L — v)(er1 — 612)‘ (64)
EC]]
092 , can also be obtained from the third of Eq. (62), but it is not discussed here because it does
not enter Eq. (43) in the present special case. We assume that the initial stresses ag) (y)s,o and

a?so are only the exponential functions of x and they are similar functions, Wthh reach the

maximum at the top surface of layer ZnO and are zero at the substrate, as shown in Fig. 2.
When h; #0

(1)
J’slo ( ) f(x) 71 (e - 1) —h; <x<0,
(2)
(x) =g(x) = (e —1), —h<x<-—h, (65)

yZnO

where 6P = a) (=h).
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According to Egs. (64), (65) one obtains

e
Tra0,(9 =) = Gy € = - (66)
When /’l] =0
)
P00 =909 = 7 €= ) ©67)

When there are no initial stresses, the phase velocity ¢ of Love waves is

(CStho > Cshgio, )min < C<Cshg;s

where

Cshzno = \/ (css + ets/€11)/ Pzno»

Cshsio, = \/Hsio,/Psio, and cshg = \/Us;/ ps;» respectively, are the shear bulk velocities of the ZnO,
SiO, layer and the substrate.

6. Numerical examples

In the following numerical examples 4, is fixed and equal to 1 x 107> m. By changing the value
of hy in a wide range and ¢, we can obtain a series of phase and group velocities. From the
results it is seen that the phase and group velocities can be adjusted in a larger range when the

SiO, layer exists. The material constants are shown in Tables 1 and 2 and ¢ = \/is;/Ps; =

5840m/s, cshgo, = \/Hsio,/Psio, = 3765.9m/s, Cshypo = \/(655 +e2s/€11)/pzmo = 2841.5m/s.

Figs. 3a and b show the relations between the phase velocity ¢y, group velocity ¢,, of the Love

wave and xh, respectively, for the electrically free case without initial stress, where ¢, = % =

Table 1
Material constants of ZnO

Density (10° kg/m?) Elastic constants (10'°N/m?) Piezoelectric constants (C/m”) Dielectric constants (10~ F /m)

P €11 C12 €13 Ca4 €1s €3] €33 €11 €33

5.665 2096 12.05 1046 423 —0.48 —0.573 1.321 0.67 0.799

Table 2

The Lame’ constants of Si and SiO,

Material Lame’ constants (10'° N/m?) Density (10> kg/m?) Dielectric constants (107! F/m)
A u p €11 €33

Si 16.57 7.94 2.328 1.035 1.035

Si0, 7.85 3.12 22 0.33 0.33
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Fig. 3. (a) Phase velocity with «h for the electrically free case without initial stresses and L = 1, (b) group velocity with
rh for the electrically free case without initial stresses and L = 1.
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Fig. 4. Variations of velocity change (co — ¢,,)/co with xh for the electrically free case without initial stresses.

% =cy+K % (the ¢y curves are not smooth due to the differentiation, d¢g/dk, in it). In these

cases the phase and group velocities will decrease with the increasing x4 for a given value of #; and
the curves tend asymptotically to a horizontal line as kh — oco. These results show that the
velocities of the Love wave are a function of x/, i.e. Love wave is a dispersion wave in a layered
structure. For all & values we have ¢ — ¢ for kh — 0. For kh — oo we have ¢ — ¢4, , Wwhen £
is the same or less than the order of /4,. But ¢ will approach Cshsio, when /; is much larger than A,
and this means that in this case the layer has the property as SiO,. The thickness /; of the middle
layer SiO, affects the phase and group velocities significantly and they increase with increasing /;.
So, by adjusting /#; we can change the velocities in a wide range than that in the case without the
middle layer.
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Fig. 5. (a) Variations of phase velocity change Ac/cy with xh and oiz) = 4200 MPa for the electrically free case, (b)
variations of phase velocity change Ac,/cgo with xh and ag,z) = +200 MPa for the electrically free case.
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Fig. 6. Variation of the electromechanical coupling coefficient x* with o{? and /iy =1 x 1075 m.

Fig. 4 shows variations of (cy — ¢,,)/co with xh for the electrically free case without initial
stresses. In the discussed cases the difference between ¢y and ¢4 achieves its maximum value in the
range 0.5<xh<2. When h;/hy — 0 or oo the difference between ¢y and cy has a smaller value
compared with finite 4, /h;. So, the energy propagation velocity is obviously slower than the phase
velocity when /; has the same order as /.

Figs. 5a and b show the relations of relative variation of the phase velocity Ac/cy and group
velocity Ac,/c,, with ich for the case with initial stresses. When the initial stress is positive stress, in
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general, the value of Ac/cy and Ac,/c, increase with increasing xh and the curves tend
asymptotically to a horizontal line as x4 — oo, where Ac = ¢ — ¢y, Acy; = ¢4 — ¢g,. ¢, co and ¢, ¢,
are phase and group velocities with and without initial stress, respectively. It is seen that 4, /h; —
0 or 0o, Ac/cy or Acy/c,, is smaller than that of finite 4 /. The maximum value is arrived when
hy/hy have the same order.

Fig. 6 shows the variation of the electromechanical coupling coefficient x> with ¢! and 5.
K2 = 2(cr — ¢5)/cr, where ¢y and ¢, are the phase velocities of electrically free and shorted cases,
respectively. Ak? = k? — kj, where 3 is the value of x? in the case without initial stress. When the
initial stress and the thickness of the middle layer (SiO,) increase the value —(Ax?/k3)
increases, too. It is also found that the relation ¢, with x/ is similar to ¢y, but ¢ is larger than ¢, at
the same xh.

7. Conclusions

Generally, we use the fractional change in phase A¢/¢, frequency Af/f or velocity Ac/c to
reflect the acoustoelastic effect of surface acoustic waves. They are given by the relations Ac/c =
s, —A¢ /¢ and Ac/c = Af'/f, where s, is the strain in the direction of propagation. A¢/¢ can be
measured by the phase shift detection technique. So, it is valuable to compute the phase velocities.

In this paper, the fundamental governing equations and boundary conditions Egs. (20) and
(21), for a general prestressed piezoelectric media under finite deformation, are established. The
global state vector equations (38)—(42) for Love wave in the layer prestressed piezoelectric
materials are also established. Under the small prestressed conditions the variations of phase
velocity, group velocity and coupling coefficient with the thickness of middle layer and initial
stress are discussed in detail. The theoretical and numerical results of this paper are meaningful
and helpful to improve the behavior of the SAW devices.
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